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1 URL

https://xuesichen.github.io/ under projects section

2 Project Description

The primary goal of project is to build an instruction scheduling technique leveraging the Rip-
Tide compiler to support time-multiplexing on CGRAs with the purpose of increasing hardware
resource utilization.

In the current RipTide design, instructions and processing elements (PEs) have one-on-one
mappings through out the entire program, which introduces inefficiencies when executing irreg-
ular workloads. For example, hardware resources executing outer loop instructions are stalled
when waiting for inner loop instructions to finish, which can be repurposed to do something
else. Thus, we introduce the idea of time-multiplexing instructions and aims to build a compiler
implementation that statically schedule instructions to be executed on CGRAs. Because recon-
figuration can happen in a single clock cycle, proper scheduling can extract a lot of parallelism
from inner loops without large overhead.

Our preliminary study on nest loop workloads has shown that dividing the DFG representation
of a workload into subgraphs based on loop boundary is a good starting point for figuring out the
static instruction scheduling. We call those subgraphs dataflow blocks. The scope of the project
focus on statically schedule instructions within a dataflow block so that it reaches a comparable
execution time if we were to do dynamic execution within a dataflow block. We will evaluate the
scheduling on dataflow-sim, which a simulator that models how dataflow architecture executes
on CGRAs. With the time-multiplexing support already in place in the simulator. We can
easily export and collect experimental results. We will investigate various possible constraints
on instruction scheduling, such as limited total processing element count, limited communication
channels between, or limited configuration options for each processing element.

We will evaluate these compiler changes on small nested loop kernels, such as matrix multi-
plication, for performance as well as on a set of other small programs to test correctness. If we
exceed our goals, we will test on more complex code with dynamic loops and conditionals.

75 percent goal: Static scheduling close to the performance of dynamic scheduling within
dataflow blocks, assuming latency of all executions to be 1 and number of hardware PEs used are
passed in through command line. The scope of the workload is nested for loops.

100 percent goal: Based on the static scheduling results, We write programs to find the max-
imum number of tokens buffered between different dataflow blocks, and within dataflow blocks.
This will shed light on architecture designs needed for running time-multiplexing.
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125 percent goal: Expand the static scheduling algorithm to accommodate the non-nested
loop workloads. We may also expand the algorithm for cases when we want to do spatial loop
unrolling and multi-tenancy.

3 Plan of Attack and Schedule

Week 1: Literature review. Reviewing existing dataflow compilation flow to identify where to
optimize scheduling.
Week 2: Create list scheduling equivalent for dataflow block scheduling. Test list scheduling on
small programs for correctness.
Week 3: Create token counting analysis pass.
Week 4: Use token counting analysis pass to determine maximum buffer occupancy between
dataflow blocks.
Week 5: Extend the scheduling algorithm to include loop unrolling and other non nested for loops
related workloads within the constraint of buffer sizes between processing elements and blocks.
Week 6: Work on poster. Profile additional applications to determine total inter-dataflow block
communication and maximum required buffer sizes.

4 Milestone

By the April 14th we hope to have a optimized static scheduling algorithm implemented that
would give comparable performance in comparison to dynamic scheduling.

5 Literature Search

We have background materials on both scheduling for dataflow and on RipTide, the specific
dataflow architecture we are investigating. There are well-studied modulo scheduling algorithms
published regarding scheduling inner loop kernels on CGRA, for example: HyCube and MRRG.

6 Resources Needed

We will use our group’s existing dataflow compilation infrastructure in LLVM as a starting point
for our project. This is already available to us. We will also make use of our existing simulator
to test the performance implications of our optimizations.

7 Getting Started

We have started our literature search. We also have a skeleton of the scheduler implemented in
the compiler.
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