
1

15745 Final Project
Instruction Scheduling and Token Allocation
for Modular Time-Multiplexing on CGRAs

Mitchell Fream(mfream@andrew.cmu.edu)
Xuesi Chen(xuesic@andrew.cmu.edu)

Abstract—Compilers for coarse-grained reconfig-
urable arrays (CGRA) often focus on accelerating
regular workloads, such as: inner loop kernels.
Recent works on energy-minimal dataflow compiler
and architecture co-design successfully achieved
mapping irregular workloads on CGRAs, but at the
expense of performance and hardware utilization.
We propose breaking down the dataflow graph
(DFG) of irregular workload, into dataflow blocks,
which are segments of regular executions within an
irregular workload. To ensure energy efficiency, we
further statically schedule instructions in a dataflow
block into Stages. The main focus of this class
project is to instruction schedule within dataflow
blocks and do token analysis to refine instruction
scheduling that would minimize the number of
output queues required per processing element (PE).

I. INTRODUCTION

A. Backgound
Extreme edge device deployment on chip-

scale satellites, wildlife monitoring and med-
ical devices are expected to operate on ultra-
low power (<1mW) for years [11], [15], [3].
Given the low energy budget and diverse ap-
plications extreme-edge processing needs to
accommodate, the computer platform should
be energy efficient, programmable, and as
performant as possible [7].

The CGRAs, consisted of a grid of pro-
cessing elements (PEs) connected by on-chip
networks (NoC), which is a good execution
platform for energy-minimal dataflow archi-
tecture. Prior CGRA-based energy-minimal
dataflow architectures [6], [4] avoid con-
trol and data movement overheads intrin-
sic to von Neumann architecture, allowing
operands to fire in-order upon data arrivals.
Unlike application-specific integrated circuits
(ASICs), the programmability of CGRAs al-
low computations in diverse applications (e.g.

machine learning, signal processing) [5] with
multiple generations of algorithmic updates
[8].

B. Related Works

Previous CGRAs [9], [1], [16], [13] use
time-multiplexing to improve performance,
but at the cost of programmability or en-
ergy efficiency, making them unsuitable to
extreme edge computing. HyCUBE [9], RE-
VAMP [1], ULP-SRP [10], IPA [2] execute
statically scheduled instructions, allowing both
spatial and temporal instruction mapping to
PEs to increase performance. However, their
applications are limited to inner loop kernel
accelerations.

While Revel[16] and Fifer [13] did address
nested loops and other irregular control, they
either employs energy draining queues for
inter-stage data transfers [13] or dataflow PEs
with costly instruction buffers and register
files [16]. Thus, they are not suitable for
energy-minimal edge computing.

The state-of-art energy-minimal order-
dataflow CGRA architecture, RipTide, has the
ability to execute arbitrary code written in
C. RipTide adopts many techniques that trade
area and performance for energy efficiencies.
As a result, RipTide reduces energy so much
that it is unable to use all available energy
in certain environments [3] (e.g. from a solar
panel under direct sunlight). Hence, it makes
sense to ask: how can we improve perfor-
mance with a small cost in energy?

One key energy-saving technique RipTide
uses is mapping only one operand to each PEs
to avoid reconfiguration. Scheduling instruc-
tions across space but not time introduces spa-
tial inefficiency that ultimately hurts area and



2

performance. Often times, instructions corre-
sponding to the outer loop execution is left
idle while waiting for the inner loop execution
to finish. Thus, we believe introducing time-
multiplexing to RipTide will render a perfor-
mant CGRA edge processor that has the pro-
grammability to execute arbitrary code written
in C. Time-sharing PEs can also decrease the
number of PEs needed for execution, fitting
complex programs that previously need larger
fabrics or allowing multi-tenancy.

C. Our Approach

We propose a compiler and architecture
co-design that divides a DFG of any arbi-
trary program into dataflow blocks in the
compiler. A dataflow block is a sequence of
related dataflow CGRA stages, such as sub-
computations of the inner loop. Within each
dataflow block, compiler schedules stages
that specify what instructions will be time-
multiplexed to the CGRA upon reconfigura-
tion. During execution, the architecture rotates
between stages within a block until it runs out
of work to do. Static-routed NoC is chosen
for the execution model for energy efficiency.
As a result of choosing Static-routed NoC,
instructions within a dataflow block needs to
be statically scheduled by the compiler, which
the part of the problem we are tackling with
this project.

To compile a program for a time-
multiplexing dataflow machine, several addi-
tional constraints must be met by the compiler:

• all instructions that receivers of tokens
produced outside of the current dataflow
block are scheduled in the first stage.
This is so that we can reduce hardware
complexity and design energy-efficient
CGRAs.

• no instructions which use the same hard-
ware queue can allow their tokens to
interfere. This is due to the nature of
ordered dataflow [16].

Our project investigates the requirements to
compile programs for a time-multiplexed
CGRA based dataflow processor, specifically
the means for scheduling instructions within
dataflow blocks and the resource utilization
constraints for communication between pro-
cessing elements.

D. Contributions

We present a method for compiler sched-
uled stages within a dataflow-block. The ques-
tion of breaking the dataflow graph apart into
multiple dataflow blocks is not the scope
of the project and is already well-addressed
by prior preliminary study. We show that
these dataflow blocks are suitable for use
as the smallest unit of dynamic scheduling
and that the stages inside them require only
static scheduling, reducing dynamic schedul-
ing overhead in energy. We show that by using
dataflow-block-based time-multiplexing and
compiler-automated static instruction schedul-
ing, performance per area improvements of
2.5x to 3x can be achieved. Next, we explain
how time-multiplexing complicates both hard-
ware design and resource allocation. We then
show how this problem can be ameliorated for
acyclic dataflow graphs through an analog to
register allocation which decreases the total
number of hardware resources required. We
give some insight into why minimizing hard-
ware resources is not always optimal. Next, we
present a hardware mechanism which allows
for this solution to be extended to cyclic
graphs as well and show that the number of
hardware queues required can be decreased by
41% to 55%, which decreases the chip size
required to run a given workload. Finally, we
show that the number of hardware queues can
be decreased by 20% to 37% without any
loss in performance by further constraining
instruction placement to limit the number of
stages in each dataflow block.

II. DESIGN

A. Instruction Scheduling

The first instructions to be executed in most
schedulers are those with no predecessors.
In our case, the first stage of a dataflow
block is populated with instructions that
have inputs from outside this dataflow block.
The hardware execution model ensure that
this dataflow block will not be scheduled
until all the inputs from other blocks are
present, so these instructions will always
be ready to fire when the dataflow block is
mapped. From here, successive stages are
built by looking at the immediate successors
of instructions. The dataflow hardware



3

works to hide instruction latency, meaning
that even in cases where there is unequal
instruction latency, scheduling should still
be done considering immediate successors
rather than instruction latencies. This strategy
creates stages with no regard to the total
number of hardware processing elements
available, however, so the final step is to
move instructions out of overfilled stages into
neighboring stages until all constraints are
satisfied. Because the dataflow engine allows
tokens to be queued for an arbitrary amount
of time and for instructions which are mapped
to only fire when their inputs are available,
there is no correctness concern when moving
instructions between stages within a dataflow
block.

Algorithm 1 Instruction Scheduling Algorithm
Require: a dataflow block (instr, E), number of PEs

currStage = instr that are receivers of const or
outputs of other dataflow blocks;
mark all currStage instrs as visited by parents;
stages = {}

while ! all instrs are visited by all of their parent
instrs do

push currStage to the end of stages;
mark all child instrs visted by the currStage

instrs;
currStages = {};
add instrs visited by all parents instrs in the

currStage;
end while

II = number of instrs % number of PEs
for all instrs in Stages that exceeds II do

targetStageIdx = stageIdx % II;
if targetStageIdx has available PEs then

insert instr at the end of targetStage;
else

insert instr to a closest stage with an available
PE;

end if
end for
erase all stages that exceeds II;

B. Token Allocation

Our hardware model can make use of
existing register allocation algorithms, but
requires a differently constructed interference
graph. Because a dataflow program does
not encode a specific schedule, a more

conservative interference graph is required. In
particular, where a von Neumann processor
can explicitly order instructions and therefore
guarantee that a given value lifetime ends
before another begins, a dataflow program
may not be able to specify. This leads
us to develop the following definition for
the register coloring interference graph in
a dataflow system as well as a sufficient
criterion for noninterference in acyclic
dataflow graphs.

Definition II.1 (Interfere). Two instructions
interfere if and only if there exists a schedule
where the live range of one instruction reaches
the other instruction.

Definition II.2 (Acyclic noninterference
Criterion). Two instructions in an acyclic
dataflow graph do NOT interfere if there is
a path in the DFG from all the uses of one
instruction to the other instruction.

The acyclic noninterference criterion
shows that two instruction do not interfere
because it ensures that all the uses of the
first instruction occur before the definition of
the second instruction occurs. Paths through
a dataflow graph indicate true dependencies
and therefore guarantee instruction ordering
in any schedule. This allows us to compute
interference without needing to iterate over
all valid schedules, and is the definition
most directly implemented in our code. It
is necessary to specify an acyclic dataflow
graph because there may be multiple dynamic
instances of an instruction in a dataflow graph
containing cycles, in which case precedence
would not ensure that they are not reordered
with one another. Unfortunately, our set of
benchmarks does not contain any acyclic
dataflow graphs upon which to test this code.
In fact, the benchmarks we used do not
contain any noninterfering edges, as they
all have highly parallel loops which permit
many possible schedules. For this reason, we
investigated a hardware mechanism to allow
for more precise queue reuse.

A concrete algorithm for determining
interference edges is presented in Algorithm
2.



4

Algorithm 2 Queue Interference Detection Algo-
rithm
Require: A dataflow graph (instr, E)

for all edges e in dataflow graph do
if e points to a Carry or Invariant instruction then

Remove e
end if

end for
Mark all instructions unvisited
Initialize descendants of all instructions to the empty
set
while Not all instruction are visited do

let i be an instruction whose successors have all
been visited

for all successors j of instruction i do
copy all descendants of j to i

end for
Mark i as a descendant of itself
Mark i as visited

end while
Now every instruction is annotated with all of its
descendants
for all pairs i,j of instructions in that dataflow graph
do

Presumptively mark i,j as interfering
if i and all of i’s children have j as a descendant

then
mark i,j, as noninterfering

end if
if j and all of j’s children have i as a descendant

then
mark i,j, as noninterfering

end if
end for
Now use any graph coloring algorithm to obtain a
coloring from the interference graph

In fact, coloring the graph is not sufficient
to place instructions in this system even
given an optimal schedule. A coloring of
instructions tells us which instruction would
benefit from sharing the same processing
element, but it does not fully specify how we
should have those instructions mapped. One
solution would be to simply add dataflow
block stages to ensure that every color can
be placed entirely on a single processing
element. This would yield the best results in
terms of queue usage, but would decrease
processing element utilization by leaving
more processing elements unmapped in an
average cycle. Thus, the number of colors
required for a function provides us with
a lower bound on the number of queues
required in hardware to support that function,
but does not necessarily provide us with the

optimal implementation for any hardware
with additional queues. This motivates a
second strategy which is to minimize the
number of queues used without adding any
stages. Due to the parallel and fully connected
nature of our hardware, moving instructions
between processing elements within a single
stage should never change the total execution
time of a program. Thus, given that our
original schedule performed well, we can find
a schedule which performs equally well but
uses fewer hardware queues. An algorithm to
achieve this is presented here as algorithm 3.

Algorithm 3 Greedy Queue Reduction Algorithm
Require: A schedule of all instructions into stages

Mark all instructions as not fixed
for all Pairs of instructions i,j which are the same
color and in different stages do

if i and j are mapped to different processing
elements then

Find instruction k in the same stage as j which
is mapped to the same PE as i

Swap the processing elements for instructions
j and k unless either is fixed

Mark i and j as fixed
end if

end for

This serves to greedily group same color
instructions to the same processing elements
without ever slowing down the program. This
mapping is certainly not optimal, as grouping
instructions this way actually amounts to
a second graph coloring problem, which
would of course not be fully optimized by
a greedy algorithm. Nevertheless, the results
we achieved with this level of sophistication
were quite promising.

In order to work with cyclic graphs, we
make the assumption that we can break all
edges leading to Carry or Invariant gates.
This solution is, in essence, tagged dataflow.
By tagging each token with its loop iteration
number, hardware can disambiguate multiple
instances of a single static instruction. If we
then replace our queues with random access
memories, we can map each dynamic itera-
tion number to an address in the memory.
This fully removes any problematic reordering
across loop iterations (i.e. in DFG cycles) by
more precisely allocating memory resources to



5

each iteration. Doing this allows us to trans-
form our cyclic dataflow graphs into acyclic
graphs by breaking edges where hardware
tag changes are enforced. In RipTide, order
among different loop iterations is maintained
by Carry and Invariant instructions; these in-
structions are the logical choice for where to
change tags, and so we break DFGs at the
inputs to Carry and Invariant gates.

III. EXPERIMENTAL SETUP

Our execution model was based on
the RipTide processor. In particular, each
processing element is equipped with a
number of output buffers which is uses to
communicate with other processing elements.
The depth of these buffers is not essential
to our contribution, but as per the original
paper it was set at 4. In order to allow for
time-multiplexing, it is required that each
processing element have multiple output
buffers, as it may be used for multiple
instructions which need to send tokens to
different destinations.
We used our lab group’s dataflow simulator
to run program binaries and count the fraction
of processing elements which were in use
in each cycle. time-multiplexing enabled
binaries used fewer processing elements, so
they were more efficient in terms of firing
processing elements per clock cycle.

In order to evaluate the effectiveness of the
queue reuse algorithm, we compare the num-
ber of queues needed by the naive mapping to
the number required by our optimized map-
ping. Because we investigated small kernels
and because of the extreme constraints that
dataflow places on the allocation algorithm,
we do not see very large amounts of queue
reuse.

IV. EXPERIMENTAL EVALUATION

We verified the correctness of the instruc-
tion scheduling using dense matrix vector
multiplication, dense matrix matrix multiplica-
tion and dense matrix convolution benchmarks
with various input sizes.

In our first experiment, we targeted a
dataflow processor with an unlimited number
of hardware queues. This means that the com-
piler needs only to optimize for performance

Fig. 1. Performance Per Area Compared to RipTide and Ideal

per unit area, as there is no failure criterion
for our mapping if it uses too many queues.
To this end, we use algorithm 1. In this case,
we find that all of our workloads show a
large improvement in performance per area
over RipTide and that our output only falls
short of the ideal performance per area by a
small amount. This suggests that there is a
large potential for time-multiplexed execution
on smaller hardware, but only if the memory
resources for execution can be scaled down
similarly to the compute resources.

In a second experiment, we consider a
queue limited machine. To this end, we use
algorithms 2 and 3 to calculate an upper
bound on the minimum number of queues
required if we allow for performance losses
and an upper bound on the number of queues
required to achieve the same performance as
in experiment 1.

In a third experiment, we manually
construct a dataflow graph which trades one
additional dataflow stage for one less queue
in dmv. By selecting an instruction to move
in an outer loop, we only incur 101 cycles of
extra execution time (<0.2% cycle overhead)
but move from 12 queues required to 11. This
demonstrates that, with proper selection, it is
possible to trade very little performance loss
for decreased queue usage. This points to a
need for algorithmic exploration of the design
space between full queue count optimization
and full performance optimization.



6

Fig. 2. Number of Queues Required for Different Optimiza-
tion Criteria

Fig. 3. Comparison of Required Hardware Resources and
Required Execution Time

V. SURPRISED AND LESSONS LEARNED

One large surprise in this work was how
often nodes interfere for the purpose of
register allocation in a dataflow architecture.
Because dataflow architectures enforce no
particular ordering on instruction execution
other than the true dependencies in the
dataflow graph, there are many possible
execution orders for a given set of instructions.
This already limits the cases where registers
(or in our case, queues) can be reused, as
there are fewer guarantees about liveness. In
particular, consider the following code snippet.

int a,b,c,d = ...;
int tmp1 = a + b; //(1)
int e = tmp1 * 5; //(2)
int tmp2 = c + d; //(3)
int f = tmp2 * 10; //(4)

A von Neumann execution model would
require explicitly scheduling these statements
in some order. In particular, if the operations
were scheduled in program order then tmp1
and tmp2 would not interfere, as the last
use of tmp1 happens before tmp2 is defined.
This is not the case in a dataflow processor,
however. Under the dataflow execution
model, there is no static schedule ordering
the execution of these statements other than
the true dependences 1 → 2 and 3 → 4.
This means that in our machine, there are
no non-interfering edges for the purpose of
register allocation. This situation gets even
worse for cyclic dataflow graphs. Consider
the following snippet.

while(i<N) {
int tmp1 = arr_in[i]; //(1)
int tmp2 = tmp1 * 5; //(2)
int tmp3 = tmp2 + 7; //(3)
arr_out[i] = tmp3;
i += 1;

}

This example appears at first glance to be
more hopeful. The true dependencies between
statements ensure that statements within
each loop iteration will execute in order,
and therefore that tmp1, tmp2, and tmp3
could be allocated to the same register, but
this analysis fails to consider additional loop
iterations. Because our machine has queues
connecting processing elements, it is possible
that as many as 4 iterations of statement 1
have occurred before a single iteration of
statement 2. This means that we still cannot
reuse registers in this case. In fact, this
is a general property of loops in our case
unless those loops have true dependencies
between every consecutive statement as well
as a true dependency between the last and
first statement. In the case of the snippet
above, there is only a write after write
dependence (which is a false dependence)
ordering successive executions of statement
1, so there is no opportunity for optimization
here given the Riptide hardware model. This
caused us to reevaluate our hardware model
and introduce a limited notion of tagging.

It was a pleasant surprise how little per-



7

formance was lost in our hand constructed
DMV mapping. We expected, based on previ-
ous literature’s focus on decreasing initiation
interval, that adding stages in such a way that
initiation interval increased would have disas-
trous effects on performance. We attribute the
very small loss in performance to the fact that
we selected an infrequently executed dataflow
block to slow down, specifically one in an
outer loop.

VI. CONCLUSIONS

We have shown that CGRA based dataflow
architectures can achieve massive improve-
ments in performance per area by decreasing
the number of processing elements on a chip
and time-multiplexing instructions. We show
that breaking a dataflow graph apart into stat-
ically schedulabled dataflow blocks achieves
a 2.5x to 3x performance per area increase
over pure RipTide without time-multiplexing,
and that this scheme achieves nearly the per-
formance per area of an optimally scheduled
execution. We have also shown that the size
of programs which can be mapped to a given
hardware configuration can be improved by
reusing hardware queues through an analog to
register allocation, which can lead to a 41%
to 55% decrease in the number of hardware
queues needed for a given workload. Taken
together, this implies a massive overprovision-
ing in existing extreme edge CGRA based
dataflow machines. Existing workloads could
run as the same performance on CGRA ar-
chitectures with one third as many processing
elements and half as many communication
channels through smarter compilation.

VII. FUTURE WORK

In order to make better use of our register
allocation scheme, future work should explore
tagged token dataflow more deeply for area
limited applications. By using a limited form
of tagging, write after write dependencies
can be removed, which allows for much
better register allocation results in cases
which contain loops. We expect that further
optimizations could decrease the number of
queues needed for some programs by taking
advantage of other facets of tagged dataflow,
improving the size of programs which can be

run on a given hardware configuration.

In addition, there are many interesting
tradeoffs that future research could investigate
in regards to CGRA based dataflow. The
general problem that large programs will
face in an increase in the number of required
hardware queues. The queue pressure in
a dataflow machine increases faster than
the register pressure in a comparable von
Neumann machine because of the lack of
a static schedule, which causes many more
instructions to interfere with one another
for the purpose of queue coloring. This
points to a possible solution, however.
Excessive parallelism, that is, having more
ready instructions than available processing
elements, does not improve performance.
Thus, in some cases, explicitly limiting the
scope of possible schedules could improve
queue allocation pressure without costing any
performance. To do this, a compiler would
simply need to add extra ordering edges
to the dataflow graph. This would cause
some instructions to now be guaranteed to
execute before other instructions which they
previously were not, which would decrease
the number of interference edges in the queue
coloring graph, leading to a reduction in the
number of required hardware resources.

Conversely, there is no benefit to using
fewer hardware queues than are available. In
the same way that a von Neumann machine
would gain no benefit by only using 12 out of
16 registers, there is no reason to minimize
the number of queues used in a dataflow
machine. Because allocating two instructions
to use the same output buffer constrains them
to be placed on the same processing element,
it often comes with a performance cost.
Increasing the number of stages in a dataflow
block to map multiple instructions to the
same processing element requires increasing
the initiation interval for that dataflow block,
which has a direct impact on latency and
throughput. Thus, the decision about which
dataflow blocks to slow down given the need
to reuse queues is nontrivial. A starting point
for future research would be to add stages
preferentially to dataflow blocks which are
outside of loops, saving the majority of the



8

hardware queues for inner loop computations.
This is similar to how it is preferable to spill
values outside of loops in a von Neumann
processor to leave as many registers available
as possible inside the loop. We showed a hand
crafted example of this in experiment 3, but
leave a full exploration of programmatically
deciding where to add stages for future work.

In the same way that there is no perfor-
mance benefit to leaving hardware queues
empty, there is no benefit to leaving processing
elements idle. This points to the possibility
of loop unrolling as a way to increase PE
utilization, especially in inner loops. Future
work would do well to explore the trade off
between better PE utilization at the cost of
increased queue usage due to static instruction
bloat caused by loop unrolling.

Lastly, there is significant room for explo-
ration in the space of memory spilling for
CGRA based architectures. Similarly to von
Neumann architectures, it may be necessary
or beneficial to store values in memory rather
than taking up valuable hardware queues with
them. The means to efficiently realize this
is nontrivial, however, as the additional load
and store instructions would cause a greater
increase in register pressure in a CGRA based
dataflow machine than in a von Neumann
machine, offsetting a portion of the benefit of
spilling.

VIII. PROJECT LOGISTICS

We feel that credit should be evenly di-
vided.

REFERENCES

[1] T. K. Bandara, D. Wijerathne, T. Mitra, and L.-S. Peh,
“Revamp: A systematic framework for heterogeneous
cgra realization,” in Proceedings of the 27th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, 2022,
pp. 918–932.

[2] S. Das, D. Rossi, K. J. Martin, P. Coussy, and L. Benini,
“A 142mops/mw integrated programmable array accel-
erator for smart visual processing,” in 2017 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS).
IEEE, 2017, pp. 1–4.

[3] B. Denby and B. Lucia, “Orbital edge computing:
Nanosatellite constellations as a new class of computer
system,” in ASPLOS 25, 2020.

[4] G. Gobieski, A. O. Atli, K. Mai, B. Lucia, and
N. Beckmann, “Snafu: an ultra-low-power, energy-
minimal cgra-generation framework and architecture,”
in 2021 ACM/IEEE 48th Annual International Sympo-
sium on Computer Architecture (ISCA). IEEE, 2021,
pp. 1027–1040.

[5] G. Gobieski, N. Beckmann, and B. Lucia, “Intermittent
deep neural network inference,” in SysML Conference,
2018, pp. 1–3.

[6] G. Gobieski, S. Ghosh, M. Heule, T. Mowry,
T. Nowatzki, N. Beckmann, and B. Lucia, “A pro-
grammable, energy-minimal dataflow compiler and ar-
chitecture,” pp. 546–564, 2022.

[7] G. Gobieski, B. Lucia, and N. Beckmann, “Intelligence
beyond the edge: Inference on intermittent embedded
systems,” in ASPLOS, 2019.

[8] N. P. Jouppi, D. H. Yoon, M. Ashcraft, M. Gottscho,
T. B. Jablin, G. Kurian, J. Laudon, S. Li, P. Ma,
X. Ma et al., “Ten lessons from three generations shaped
google’s tpuv4i: Industrial product,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2021, pp. 1–14.

[9] M. Karunaratne, A. K. Mohite, T. Mitra, and L.-S. Peh,
“Hycube: A cgra with reconfigurable single-cycle multi-
hop interconnect,” in Proceedings of the 54th Annual
Design Automation Conference 2017, 2017, pp. 1–6.

[10] C. Kim, M. Chung, Y. Cho, M. Konijnenburg, S. Ryu,
and J. Kim, “Ulp-srp: Ultra low-power samsung recon-
figurable processor for biomedical applications,” ACM
Transactions on Reconfigurable Technology and Sys-
tems (TRETS), vol. 7, no. 3, pp. 1–15, 2014.

[11] B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel,
“Intermittent computing: Challenges and opportunities,”
2nd Summit on Advances in Programming Languages
(SNAPL 2017), 2017.

[12] R. Nagarajan, K. Sankaralingam, D. Burger, and S. W.
Keckler, “A design space evaluation of grid processor
architectures,” in Proceedings. 34th ACM/IEEE Inter-
national Symposium on Microarchitecture. MICRO-34.
IEEE, 2001, pp. 40–51.

[13] Q. M. Nguyen and D. Sanchez, “Fifer: Practical ac-
celeration of irregular applications on reconfigurable
architectures,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, 2021,
pp. 1064–1077.

[14] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim,
J. Huh, D. Burger, S. W. Keckler, and C. R. Moore,
“Exploiting ilp, tlp, and dlp with the polymorphous trips
architecture,” in Proceedings of the 30th annual interna-
tional symposium on Computer architecture, 2003, pp.
422–433.

[15] F. Tavares, “Kicksat 2,” May 2019. [Online]. Available:
https://www.nasa.gov/ames/kicksat

[16] J. Weng, S. Liu, Z. Wang, V. Dadu, and T. Nowatzki, “A
hybrid systolic-dataflow architecture for inductive ma-
trix algorithms,” in 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA).
IEEE, 2020, pp. 703–716.

https://www.nasa.gov/ames/kicksat

	Introduction
	Backgound
	Related Works
	Our Approach
	Contributions

	Design
	Instruction Scheduling
	Token Allocation

	Experimental Setup
	Experimental Evaluation
	Surprised and Lessons Learned
	Conclusions
	Future Work
	Project Logistics
	References

