
Dataflow Blocks: Modular Time-Multiplexing for
CGRAs

Xuesi Chen, Nishanth Subramanian, Karthik Ramanathan, Nathan Beckmann, Brandon Lucia
Carnegie Mellon University

{xuesic, nsubram2, kramana2, blucia}@andrew.cmu.edu beckmann@cs.cmu.edu

Abstract—Recent works on energy-minimal dataflow architec-
ture executed on coarse-grained reconfigurable array (CGRA)
sacrifices area and performance for better energy efficiency,
which open up opportunities for better hardware utilization and
greater performance. We propose dividing dataflow graphs into
Dataflow Blocks as the basic module for scheduling instructions
to be time-multiplexed. Our preliminary results show a 2.5x
increase in performance per area compared to a state-of-the-
art CGRA, RipTide, based on simulation results. Therefore, we
believe our full-stack work that spans from C code compilation
down to hardware modifications has great potential to increase
the performance per area for arbitrary code execution on energy-
minimal CGRAs.

I. INTRODUCTION AND RELATED WORKS

Extreme edge device deployment on chip-scale satellites,
wildlife monitoring and medical devices are expected to
operate on ultra-low power (<1mW) for years [3, 11, 15].
Given the low energy budget and diverse applications extreme-
edge processing needs to accommodate, the computer platform
should be energy efficient, programmable, and as performant
as possible [7].

The CGRAs, consisted of a grid of processing elements
(PEs) connected by on-chip networks (NoC), which is a good
execution platform for energy-minimal dataflow architecture.
Prior CGRA-based energy-minimal dataflow architectures [4,
6] avoid control and data movement overheads intrinsic to von
Neumann architecture, allowing operands to fire in-order upon
data arrivals. Unlike application-specific integrated circuits
(ASICs), the programmability of CGRAs allow computations
in diverse applications (e.g. machine learning, signal process-
ing) [5] with multiple generations of algorithmic updates [8].

Previous CGRAs [1, 9, 13, 16] use time-multiplexing to
improve performance, but at the cost of programmability or
energy efficiency, making them unsuitable to extreme edge
computing. HyCUBE [9], REVAMP [1], ULP-SRP [10], IPA
[2] execute statically scheduled instructions, allowing both
spatial and temporal instruction mapping to PEs to increase
performance. However, their applications are limited to inner
loop kernel accelerations.

While Revel [16] and Fifer [13] did address nested loops and
other irregular control, they either employs energy draining
queues for inter-stage data transfers [13] or dataflow PEs with
costly instruction buffers and register files [16]. Thus, they are
not suitable for energy-minimal edge computing.

The state-of-art energy-minimal order-dataflow CGRA ar-
chitecture, RipTide, has the ability to execute arbitrary code

Fig. 1. Dataflow Block partition on a toy nested loop example. With the
introduction of modular time-multiplexing, the number of PEs required on
the CGRA shrink from 6 to 2.
written in C. RipTide adopts many techniques that trade area
and performance for energy efficiencies. As a result, RipTide
reduces energy so much that it is unable to use all available
energy in certain environments [3] (e.g. from a solar panel
under direct sunlight). Hence, it makes sense to ask: how can
we improve performance with a small cost in energy?

One key energy saving technique RipTide uses is map-
ping only one operand to each PEs to avoid reconfiguration.
Scheduling instructions across space but not time introduces
spatial inefficiency that ultimately hurts area and performance.
In nested loop examples shown in Fig 1, the instructions
corresponding to the outer loop execution are left idle while
waiting for the inner loop execution to finish. Thus, we believe
introducing time-multiplexing to RipTide will render perfor-
mant CGRA edge processor that has the programmability
to execute arbitrary code written in C. Time-sharing PEs
can also decrease the number of PEs needed for execution,
fitting complex programs that previously need larger fabrics
or allowing multi-tenancy.

We propose a compiler and architecture co-design that
divides a DFG of any arbitrary program into Dataflow Blocks
in the compiler. Within each Dataflow Block, we further group
instructions into stages that specify what instructions will be
time-multiplexed to the CGRA upon reconfiguration. During
execution, the architecture rotates between stages within a
block until it runs out of work to do. Static-routed NoC is
chosen for the execution model for energy efficiency.

While the TRIPS processor [12, 14], a VLIW-dataflow
hybrid also partitions programs to large hyperblocks for exe-
cution, hyperblocks statically schedules instructions. Dataflow
Blocks, on the other hand, simply rotates instructions within a
block, allowing data and control dependencies to guide the
execution. On top of that, software pipelining in Dataflow



Fig. 2. Limit study shows dmv execution with stages of periodicity.
Blocks is much simpler given that operation scheduling is
handled in a distributed fashion due to dataflow firing rule.

II. PRELIMINARY STUDIES AND SIMULATION RESULTS

Our preliminary study is done on a Python simulator, dataflow-
sim, which is a high-level abstraction of RipTide. It removes
the complexity of implementing routing and NoC and esti-
mates PE utilization and execution time.

To start with, we run a limit study to answer two questions:
1. What is the number of PEs needed to run workloads
if routing and PE placements are not considered? 2. Given
enough PE resources, what does the ideal execution pattern
look like?

The result of the limits study shows two insights: 1. Program
execution time has diminishing returns as the number of
available PEs increase. 2. At different stages of execution,
predominately marked by control branching (e.g. loop bound-
aries), the instructions firing trend displays a repeated pattern
with certain initiation interval (II), as shown in Fig 2.

Therefore, we propose a compiler and architecture co-design
that divides an DFG of any arbitrary program into ”stages”
using a compiler. We group the instruction in the ”stages” as
Dataflow Blocks. Instruction scheduling is performed inside of
the Dataflow Blocks to emulate the repeated instruction firing
pattern suggested by limit study.

We manually divide DFG into Dataflow Blocks and pro-
grammed a simple instruction scheduler. The runtime sched-
uler in the simulator starts by mapping a Dataflow Block onto
the fabric and executes by rotating stages in a Round-Robin
fashion until the whole Dataflow Block runs out of work
to do. There are two options for deciding which Dataflow
Block should execute next. Current simulation results show
that for simple nested for loops, the Round-Robin execution
order is sufficient. However, as we run into more complicated
workloads with complex control, it might make sense to
choose the Dataflow Blocks with most work to do. The amount
of work a Dataflow Block needs to do is based on the number
of instructions in the Dataflow Block that are ready to be fired.

Simulation results show that a reasonable Dataflow Blocks
partition and instruction scheduling gives us close to ideal per-
formance per area, exceeding the baseline RipTide implemen-
tation by 2.5x. Fig 3 shows the performance comparison for
dmv with different scheduling and hardware support generated
by the simulator. The ideal performance will require PE-level
time-multiplexing, which is too energy-consuming for edge
computing. However, Dataflow Blocks allow the performance
for static-routed coarse-grain time-multiplexing to be almost

RipTide Ideal Dataflow
Blocks

0

1

2

3

No
rm

al
ize

d
Pe

rfo
rm

an
ce

 p
er

 A
re

a

Fig. 3. simulation results for dmv. Area is estimated based on the number
of PEs needed for execution.

as good.

III. FUTURE DESIGN AND IMPLEMENTATIONS

We plan on continuing the exploration of Dataflow Block
partition and scheduling algorithms using the simulator. Once
we narrow down the selection of compiler and architecture
design, RTL synthesis will be performed. We leverage RipTide
as our baseline, which has a compiler that generates dataflow
graphs and a 6x6 CGRA fabric synthesized in Intel 22FFL
for execution. In the below subsections, we discuss detailed
compiler and architecture changes we will be working on in
the near future.

A. Compiler Design
At the end of DFG generation, the compiler is expected to
estimate the maximum number of PEs needed to execute
a workload by identifying the critical path and maximum
dependency width.

Meanwhile, the Dataflow Blocks should be indicated. Back
edges, control operators on the graph are keys elements for
us to identify Dataflow Blocks. This is because they signal
the boundaries of loops, which can be software pipelined. We
are also considering profile-guided compilation, especially for
aiding us through identifying Dataflow Blocks on workloads
with complicated controls.

Within a dataflow block, list scheduling and software
pipelining techniques are used to assign instructions to PEs
based on the maximum number of PEs needed. This will result
in stages, which are groups of instructions mapped to PEs.
The length of each stage does not exceed the number of PEs
allocated but should be maximized.

B. Hardware Modification
Homogenizing PE functionalities is required for time-
multiplexing support. Banks should also be added to PEs for
storing the instructions lists in the current Dataflow Block.
The NoC needs to have store control flow filters and routing
connections in its banks. We will add selectors to point to the
right stage when reconfiguration to the whole fabric happens.

C. Evaluation
We will use Cadence Xcelium for correctness verification and
performance measurement. Cadence Joules will be used for
power estimation.

We plan on comparing our performance and energy data
with the baseline RipTide, especially with workloads that have
irregular loops, nested loops and control heavy workloads
(e.g. dmv, dmm, fft, bfs, SpMV, etc.). On top of that,
a quantitative comparison with HyCUBE, REVAMP, Fifer,



Revel in terms of MOPS/mW and applications supported is
intended to be the evaluation scope.

REFERENCES

[1] T. K. Bandara, D. Wijerathne, T. Mitra, and L.-S. Peh, “Revamp: A sys-
tematic framework for heterogeneous cgra realization,” in Proceedings
of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2022, pp. 918–932.

[2] S. Das, D. Rossi, K. J. Martin, P. Coussy, and L. Benini, “A 142mops/mw
integrated programmable array accelerator for smart visual processing,”
in 2017 IEEE International Symposium on Circuits and Systems (IS-
CAS). IEEE, 2017, pp. 1–4.

[3] B. Denby and B. Lucia, “Orbital edge computing: Nanosatellite constel-
lations as a new class of computer system,” in ASPLOS 25, 2020.

[4] G. Gobieski, A. O. Atli, K. Mai, B. Lucia, and N. Beckmann, “Snafu:
an ultra-low-power, energy-minimal cgra-generation framework and
architecture,” in 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2021, pp. 1027–1040.

[5] G. Gobieski, N. Beckmann, and B. Lucia, “Intermittent deep neural
network inference,” in SysML Conference, 2018, pp. 1–3.

[6] G. Gobieski, S. Ghosh, M. Heule, T. Mowry, T. Nowatzki, N. Beckmann,
and B. Lucia, “A programmable, energy-minimal dataflow compiler and
architecture,” pp. 546–564, 2022.

[7] G. Gobieski, B. Lucia, and N. Beckmann, “Intelligence beyond the edge:
Inference on intermittent embedded systems,” in ASPLOS, 2019.

[8] N. P. Jouppi, D. H. Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin,
G. Kurian, J. Laudon, S. Li, P. Ma, X. Ma et al., “Ten lessons
from three generations shaped google’s tpuv4i: Industrial product,” in
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2021, pp. 1–14.

[9] M. Karunaratne, A. K. Mohite, T. Mitra, and L.-S. Peh, “Hycube: A cgra
with reconfigurable single-cycle multi-hop interconnect,” in Proceedings
of the 54th Annual Design Automation Conference 2017, 2017, pp. 1–6.

[10] C. Kim, M. Chung, Y. Cho, M. Konijnenburg, S. Ryu, and J. Kim, “Ulp-
srp: Ultra low-power samsung reconfigurable processor for biomedical
applications,” ACM Transactions on Reconfigurable Technology and
Systems (TRETS), vol. 7, no. 3, pp. 1–15, 2014.

[11] B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel, “Intermittent
computing: Challenges and opportunities,” 2nd Summit on Advances in
Programming Languages (SNAPL 2017), 2017.

[12] R. Nagarajan, K. Sankaralingam, D. Burger, and S. W. Keckler, “A
design space evaluation of grid processor architectures,” in Proceed-
ings. 34th ACM/IEEE International Symposium on Microarchitecture.
MICRO-34. IEEE, 2001, pp. 40–51.

[13] Q. M. Nguyen and D. Sanchez, “Fifer: Practical acceleration of irregular
applications on reconfigurable architectures,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, 2021, pp.
1064–1077.

[14] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. R. Moore, “Exploiting ilp, tlp, and dlp with
the polymorphous trips architecture,” in Proceedings of the 30th annual
international symposium on Computer architecture, 2003, pp. 422–433.

[15] F. Tavares, “Kicksat 2,” May 2019. [Online]. Available:
https://www.nasa.gov/ames/kicksat

[16] J. Weng, S. Liu, Z. Wang, V. Dadu, and T. Nowatzki, “A hybrid systolic-
dataflow architecture for inductive matrix algorithms,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 703–716.


